
Sensor Debugging Guide

Version：1.1.3

Release date: 2021-12-28

Copyright © 2020 CVITEK Co., Ltd. All rights reserved.
No part of this document may be reproduced or transmiited in any form or by any means
without prior written consent of CVITEK Co., Ltd.

CONTENTS

1 Disclaimer 2

2 Introduction to Sensor Drivers 3
2.1 Hardware Architecture . 3
2.2 Sensor Library Structure . 4
2.3 Debugging Process . 5

3 Confirm Specifications 6
3.1 Confirm Main Chip Specifications . 6
3.2 Confirm Sensor Specifications . 7

4 Image Output Debugging 9
4.1 Hardware Preparation . 9
4.2 Configure the Initialization Sequence . 9
4.3 Adapting to Sample Common (New) . 12
4.4 Adapting to Sample Common (Old) . 15
4.5 Adding Sensor INI Configuration . 18

5 Image Output Verification 20
5.1 Dump RAW . 20
5.2 Dump YUV . 21

6 Basic Functions of ISP 22
6.1 Development Process . 22
6.2 Notes . 22

7 Complete the AE Configuration Function 25
7.1 Development Process . 25
7.2 Notes . 25

8 Complete Other Functions 28
8.1 Sensor Initialization Process . 28
8.2 Sensor Shutdown Process . 29
8.3 Sensor AE Synchronization Process . 29

9 AE Related Verification 31
9.1 BLC Confirmation and Verification . 31
9.2 Exposure Linearity Verification . 32
9.3 Gain Linearity Verification . 34
9.4 Advanced Verification . 35
9.5 Response Frame Verification . 36
9.6 Validation of Exposure Gain Synchronization . 37
9.7 Verify FPS Controllability . 39

10 Common Problem 40

i

10.1 Proc Message Interpretation . 40
10.2 The Open of Sensor-related Log . 41
10.3 How to Configure Lane Line Sequence . 41
10.4 How to Select the MAC Frequency . 42
10.5 Error Checking Process . 43

11 Color, Noise Reduction, and Other Corrections 46

12 Image Quality Tuning. 47

13 Debugging Tool 48
13.1 Basic Functions. 48
13.2 Dump RAW . 48
13.3 Dump YUV . 49
13.4 Set flip/mirror . 49
13.5 Switching between WDR and Linear . 49
13.6 AE Related Verification . 50

ii

SensorDebuggingGuide, Release master

Revision History

Revision Date Description
1.0 2019/10/12 First draft.
1.1.0 2021/10/1 Supplemented practical operation details.
1.1.2 2021/12/28 Added sensor_test.
1.1.3 2023/04/13 Add 181X/180X details

CONTENTS 1

CHAPTER

ONE

DISCLAIMER

Terms and Conditions
The document and all information contained herein remain the CVITEK Co., Ltd’s (“CVITEK”）
confidential information, and should not disclose to any third party or use it in any way without
CVITEK’s prior written consent.
User shall be liable for any damage and loss caused by unauthority use and disclosure.

CVITEK reserves the right to make changes to information contained in this document at any time
and without notice.

All information contained herein is provided in “AS IS”basis, without warranties of any kind,
expressed or implied, including without limitation mercantability, non-infringement and fitness for a
particular purpose.
In no event shall CVITEK be liable for any third party’s software provided herein, User shall only
seek remedy against such third party.
CVITEK especially claims that CVITEK shall have no liable for CVITEK’s work result based on
Customer’s specification or published shandard.

Contact Us

Address Building 1, Yard 9, FengHao East Road, Haidian District, Beijing, 100094, China

Building T10, UpperCoast Park, Huizhanwan, Zhancheng Community, Fuhai Street,
Baoan District, Shenzhen, 518100, China

Phone +86-10-57590723 +86-10-57590724

Website https://www.sophgo.com/

Forum https://developer.sophgo.com/forum/index.html

2

https://www.sophgo.com/
https://developer.sophgo.com/forum/index.html

CHAPTER

TWO

INTRODUCTION TO SENSOR DRIVERS

2.1 Hardware Architecture

The data flow is roughly as follows: Sensor -> PHYA -> PHYD -> MAC (CSI/sub-LVDS/TTL)
-> ISP’s CSI BDG.

The Sensor outputs differential signals on the lane bus, which is received and assembled by PHYA.
The signal is then converted into pixel digital signals by PHYD, and the frame data is combined with
the MAC clk sync, processed by VI, and then sent to the ISP for further processing.

3

SensorDebuggingGuide, Release master

2.2 Sensor Library Structure

The structure of the Sensor library is shown in the following diagram, which generally includes 4
files: xxx_cmos.c, xxx_sensor_ctl.c, xxx_cmos_param.h, and xxx_cmos_ex.h.

• xxx_cmos.c contains the main functional functions of the Sensor driver, which implements the AE
control related functions, ISP default configuration, Sensor startup mode selection function, Sensor
registration and deregistration functions to AE, AWB, ISP, and SnsxxxObj.

• xxx_cmos.c contains the main functional functions of the Sensor driver, which implements the AE
control related functions, ISP default configuration, Sensor startup mode selection function, Sensor
registration and deregistration functions to AE, AWB, ISP, and SnsxxxObj.

• xxx_sensor_ctl.c mainly includes the initialization sequence of the Sensor, communication interface
initialization, and implementation of read and write functions.

• xxx_cmos_ex.h is a header file that declares the definitions of some structures, resolutions, mode
types, and so on.

• xxx_cmos_param.h mainly includes the configuration of sensor property parameters, mipi property
parameters, and isp noise profiles.

2.2. Sensor Library Structure 4

SensorDebuggingGuide, Release master

2.3 Debugging Process

2.3. Debugging Process 5

CHAPTER

THREE

CONFIRM SPECIFICATIONS

3.1 Confirm Main Chip Specifications

• Supported upper limit of Combo PHY input frequency.

• Supported Combo PHY lane configuration.

• Supported linear/WDR interface modes.

• Supported I2C bus number.

• Supported output reference clock.

For example, cv181x supports the following:

• 1C4D（1clk lane，4data lane）

• 2.5Gbps/lane

• RAW(8/10/12)+YUV422(8/10)

• 2-frame HDR (180X no support WDR)

• Support lane/pn swap

• I20-I2C3

• 200 – 600M MAC clock:

Mclk reference clock:

6

SensorDebuggingGuide, Release master

3.2 Confirm Sensor Specifications

• Confirm Sensor Control Interface (I2C/SPI).

• Confirm Sensor Power-on Sequence.

• Confirm sensor input reference clock.

• Confirm Bayer pattern and pixel code width.

• Confirm the image transfer interface mode and output frequency for linear/WDR mode.

3.2. Confirm Sensor Specifications 7

SensorDebuggingGuide, Release master

• Confirm how to set exposure time and gain for linear/WDR mode.

• Confirm how to modify frame rate for linear/WDR mode.

• Confirm the sync code when the interface is subLVDS/HiSPi.

• Request Sensor Initialize Settings from the sensor manufacturer.

3.2. Confirm Sensor Specifications 8

CHAPTER

FOUR

IMAGE OUTPUT DEBUGGING

4.1 Hardware Preparation

• Confirm that the power supply to the sensor is correct.

• Confirm that the Sensor Reset GPIO is correct.

• Confirm the source of the sensor’s input reference clock (main chip or external crystal oscillator).

• Confirm that the I2C-writable sensor registers can be erased. Use the default i2c_read/i2c_write
commands in the file system to verify.

4.2 Configure the Initialization Sequence

Refer to the driver for the sensor of the same manufacturer in the version release package to configure
the initialization sequence.

During the initial bringup of a new sensor, it is recommended to comment out AE algorithm-related
callbacks to exclude the influence of the algorithm.

• Modify sample_common_vi.c and remove the call to SAMPLE_COMM_ISP_Run.

• Modify the init function in xxx_cmos_ctrl.c and comment out the call to xxx_default_reg_init.

9

SensorDebuggingGuide, Release master

Once the sensor adaptation is complete and the image can be displayed, remember to uncomment
these lines of code.

Step 1. Prepare the sensor driver.

• Select the sensor driver closest to the specifications in the release package based on the sensor
vendor, maximum resolution, and WDR mode, make the necessary modifications, and compile the
sensor library. Details can be found in the xxxx_cmos.c, xxxx_cmos_ex.h, xxxx_cmos_param.h,
and xxxx_sensor_ctl.c files in component/isp/user/sensor/cv18xx/xxxx.

• Modify the I2C configuration in xxxx_sensor_ctl.c, such as i2c_addr, addr_byte, and data_byte.

const CVI_U8 imx327_i2c_addr = 0x1A;
const CVI_U32 imx327_addr_byte = 2;
const CVI_U32 imx327_data_byte = 1;

• According to the sensor interface specification, modify the xxxx_rx_attr and pfnGetRxAttr in
xxxx_cmos_param.h to set the attributes of the MIPI-RX.

.Input_mode: Sets the input mode to MIPI, LVDS, or other interface types.

.Mac_clk: mac clock frequency.

.raw_data_type: bit width of data.

.lane id: Configuration of the MIPI data lane and clock lane IDs.

.cam: mclk ID.

.freq: Reference input clock provided by SOC to the sensor.

.devno: mipirx number, sensor ID.

The detailed content can refer to the data types in the document”MIPI User Guide_v1.1.1.docx”
.

• According to the sensor output mode, modify g_astxxx_mode in xxxx_cmos_param.h.

static const IMX327_MODE_S g_astImx327_mode[IMX327_MODE_NUM] = {
[IMX327_MODE_1080P30] = {

.name = "1080p30",

.astImg[0] = {
.stSnsSize = {

.u32Width = 1948,

.u32Height = 1097,
},
.stWndRect = {

.s32X = 12,

.s32Y = 8,

.u32Width = 1920,

.u32Height = 1080,
},

(continues on next page)

4.2. Configure the Initialization Sequence 10

SensorDebuggingGuide, Release master

(continued from previous page)

.stMaxSize = {
.u32Width = 1948,
.u32Height = 1097,

},
},
.f32MaxFps = 30,
.f32MinFps = 0.119,
.u32HtsDef = 0x1130,
.u32VtsDef = 1125,
.stExp[0] = {

.u16Min = 1,

.u16Max = 1123,

.u16Def = 400,

.u16Step = 1,
},
.stAgain[0] = {

.u16Min = 1024,

.u16Max = 62416,

.u16Def = 1024,

.u16Step = 1,
},
.stDgain[0] = {

.u16Min = 1024,

.u16Max = 38485,

.u16Def = 1024,

.u16Step = 1,
},
.u16RHS1 = 11,
.u16BRL = 1109,
.u16OpbSize = 10,
.u16MarginVtop = 8,
.u16MarginVbot = 9,

},
}

• Modify pfn_cmos_set_image_mode to determine the corresponding sensor mode based on the
specified width, height, and frame rate.

The init sequence we usually receive corresponds to the output mode of the maximum resolution,
which is the all-pixel scan mode. However, in some cases, customers may need to crop the data
output by the sensor, so it is necessary to adapt it to the window crop mode. To do so, you would
need to ask the sensor manufacturer to provide an init sequence that corresponds to the crop mode,
or modify the init sequence according to the sensor spec on your own.

Step 2. Sensor initialization sequence.

• Implement pfn_cmos_sensor_init, the initial sequence for the sensor mode, in xxxx_sensor_ctrl.c.

• Temporarily comment out the call to xxxx_default_reg_init in xxxx_sensor_ctrl.c.

• Add new sensor object.

4.2. Configure the Initialization Sequence 11

SensorDebuggingGuide, Release master

4.3 Adapting to Sample Common (New)

When adapting to the sensor, if the specific VI_DEV_ATTR_S structure variable such as
DEV_ATTR_NEXTCHIP_N5_2M_BASE is removed from sample_common_vi.c and replaced with
a universal variable DEV_ATTR_SENSOR_BASE, as shown in the figure below, it indicates that the
new sample common architecture is used.

At this point, adaptation can be carried out according to the following steps:

• Extern the sensor object to include/cvi_sns_ctrl.h.

• Add a new SAMPLE_SNS_TYPE_E to sample_comm.h.

4.3. Adapting to Sample Common (New) 12

SensorDebuggingGuide, Release master

• Add a sensor Obj to SAMPLE_COMM_GetSnsObj in sample_common_isp.c.

• In the sample_common_vi.c file, add corresponding cases for SAM-
PLE_COMM_VI_GetDevAttrBySns, SAMPLE_COMM_VI_GetChnAttrBySns, and SAM-
PLE_COMM_VI_GetSizeBySensor.

4.3. Adapting to Sample Common (New) 13

SensorDebuggingGuide, Release master

• Add the new sensor name to the snsr_type_name array, and make sure the sensor name is con-
sistent with the enum name and order of SAMPLE_SNS_TYPE_E added in sample_comm.h.

4.3. Adapting to Sample Common (New) 14

SensorDebuggingGuide, Release master

• sample/common/Kbuild.

4.4 Adapting to Sample Common (Old)

• Extern the sensor object to include/cvi_sns_ctrl.h.

• Add a new SAMPLE_SNS_TYPE_E to sample_comm.h.

4.4. Adapting to Sample Common (Old) 15

SensorDebuggingGuide, Release master

• In sample_common_isp.c, add the corresponding isp_pub_attr and add the cor-
responding case statements in SAMPLE_COMM_ISP_GetIspAttrBySns and SAM-
PLE_COMM_ISP_GetSnsObj.

• Add corresponding vi_dev_attr in sample_common_vi.c, and add corresponding cases in SAM-
PLE_COMM_VI_GetDevAttrBySns, SAMPLE_COMM_VI_GetChnAttrBySns, and SAM-
PLE_COMM_VI_GetSizeBySensor.

4.4. Adapting to Sample Common (Old) 16

SensorDebuggingGuide, Release master

• Add the new sensor name to the snsr_type_name array, and make sure that the sensor name
matches the enumeration name and order of the new SAMPLE_SNS_TYPE_E added to sam-
ple_comm.h.

4.4. Adapting to Sample Common (Old) 17

SensorDebuggingGuide, Release master

• sample/common/Kbuild

4.5 Adding Sensor INI Configuration

Some properties of the sensor can be modified by changing the configuration in the ini file, such as
the lane sequence, I2C port, and sensor output mode.

By default, the middleware will first read the sensor configuration file from
/mnt/data/sensor_ini.cfg. If the file is not found in this directory, it will continue to read from
/mnt/system/usr/bin/sensor_cfg.ini. If the file is not found in this directory either, the middleware
will use the initial values defined in the code.

Here is an example of the sensor_cfg.ini file for the gc2053 sensor:

[source]
;type = SOURCE_USER_FE
dev_num = 2
; section for sensor
[sensor]
; sensor name
name = GCORE_GC2053_MIPI_2M_30FPS_10BIT
bus_id = 0

(continues on next page)

4.5. Adding Sensor INI Configuration 18

SensorDebuggingGuide, Release master

(continued from previous page)

mipi_dev = 0
lane_id = 1, 3, 2, -1, -1
; section for sensor2
[sensor2]
name = GCORE_GC2053_SLAVE_MIPI_2M_30FPS_10BIT
bus_id = 3
mipi_dev = 1
lane_id = 0, 4, 2, -1, -1

name: Represents the output mode of the sensor, and it should be consistent with the enumeration
name added in SAMPLE_SNS_TYPE_E in sample_comm.h.

Bus_id: Represents the I2C bus number.

Mipi_dev: Indicates which MIPI-RX group to use.

Lane_id: Indicates the configuration of MIPI lanes.

Pn_swap: Indicates whether P/N swap is required or not. Set to 0 if it’s not required, and set to
1 if it’s required.

Mclk: Indicates which group of mclk to use as reference clock.

Mclk_en: Represents which group of mclk is enabled to output.

hw_sync: Dual sensor frame synchronization, hw_sync=1 means the slave sensor is synchronized
with the master sensor.

sns_i2c_addr: The I2C device address of the sensor.

4.5. Adding Sensor INI Configuration 19

CHAPTER

FIVE

IMAGE OUTPUT VERIFICATION

If the timing meets the working requirements of the sensor and there is no“select timeout”message
printed, it can be confirmed that the sensor image is outputting normally after configuring the init
settings.

If there is an exception, please refer to 10.5. Error Checking Process .

Below is an example of using sensor_test to confirm the output of a sensor’s image.

The PC tool CvitekRawViewer is required for image viewing, the link is: CvitekRawViewer.

Note: If you have commented out the AE-related functions earlier, the manufacturer’s default
initial settings will be used. This may result in dark or completely black images. You may need to
manually adjust the sensor’s exposure and gain registers.

5.1 Dump RAW

Run the sensor_test program, enter 1 to select“dump vi raw data”, then follow the prompt“To
get raw dump from dev(0~1):”and enter dev (0 represents vi pipe0, dump images from the first sensor,
1 represents vi pipe1, dump images from the second sensor).

Then according to the prompt“how many loops to do (1~60)”, enter loops (indicating how many
frames to dump).

RAW image viewing method:

To view the dumped raw image, use the CvitekRawViewer tool on the computer and configure the
corresponding chip, format, width, and height.

The tool is used as shown in the figure below:

20

https://cvitekcn.sharepoint.com/:u:/s/tmp/ER7iHfnNBZZLrWhzNZlTassBQdUKu8-jz1lhEt9ziEb5fw

SensorDebuggingGuide, Release master

Note:

a. The displayed raw image should have a greenish bias. If it appears purplish or has diagonal lines,
the configuration of the Bayer format, flip/mirror, and related settings should be checked.

b. The width, height, and color format can generally be obtained from the dumped file name.

c. By default, sensor_test uses the raw image compression mode COMPRESS_MODE_TILE, so
“dpcm raw6”should be selected in the tool. If compression mode is not enabled,“raw12”should
be selected.

5.2 Dump YUV

Run sensor_test, select“dump vi yuv”by inputting 2, and follow the prompts to dump yuv images:

Use CvitekRawViewer tool on your computer to configure the corresponding chip, format, width,
and height.

5.2. Dump YUV 21

CHAPTER

SIX

BASIC FUNCTIONS OF ISP

The functionality of the sensor driver is implemented by operation callbacks. This chapter de-
scribes the basic functions that should be implemented by the ISP callbacks, assuming that the user
is familiar with the Sensor datasheet. When debugging the ISP-related callbacks, please reopen the
SAMPLE_COMM_ISP_Run and xxx_default_reg_init calls that were previously commented out.

6.1 Development Process

Please implement the following basic ISP callbacks in order:

1. pfn_cmos_sensor_init

2. pfn_cmos_sensor_exit

3. pfn_cmos_sensor_global_init

4. pfn_cmos_set_image_mode

5. pfn_cmos_set_wdr_mode

6. pfn_cmos_get_isp_default

7. pfn_cmos_get_sns_reg_info

6.2 Notes

• pfn_cmos_sensor_init - Implement the vendor-provided initialization sequence using the sensor
communication interface (I2C/SPI). The correctness of the communication interface structure
should be noted. Because AE-related callbacks will also be called before the sensor initializa-
tion, the sensor AE buffer should be set before the sensor starts outputting data. Refer to the
xxxx_default_reg_init in the xxxx_sensor_ctrl.c.

• pfn_cmos_sensor_exit - Close the communication interface used.

• pfn_cmos_sensor_global_init - Initialize the sensor driver parameters.

• pfn_cmos_set_image_mode - Set the output format of the sensor. The sensor driver should choose
the closest resolution as the output format.

• pfn_cmos_set_wdr_mode - Set whether the sensor output is in WDR mode

• pfn_cmos_get_isp_default - Provide ISP parameters related to the sensor.

• pfn_cmos_get_sns_reg_info - Provide AE synchronization information stored in the sensor driver.
To synchronize the AE settings with the sensor output image, when the AE callbacks are called,
the sensor driver does not immediately write to the sensor buffer, but stores the modified settings.
The firmware will call pfn_cmos_get_sns_reg_info at a fixed period to obtain synchronization
information and pass it to the kernel space ISP driver. The ISP driver is responsible for syn-
chronously writing to the sensor buffer. In addition, the sensor may have different WDR output

22

SensorDebuggingGuide, Release master

formats, so the size of the image, crop position, and MIPI-RX settings may be recalculated and set
with different exposure values. The sensor driver should ask the vendor for the calculation formula,
and the ISP driver will update the corresponding module accordingly.

• The structure returned by pfn_cmos_get_sns_reg_info is divided into three categories:

typedef struct _ISP_SNS_SYNC_INFO_S {
ISP_SNS_REGS_INFO_S snsCfg;
ISP_SNS_ISP_INFO_S ispCfg;
ISP_SNS_CIF_INFO_S cifCfg;

} ISP_SNS_SYNC_INFO_S;

snsCfg represents the sensor buffers that need to be synchronized, ispCfg represents the Crop in-
formation that needs to be synchronized, and cifCfg represents the mipi-rx settings that need to be
synchronized. When need_update is True, it means that the synchronization data of this type needs to
be updated by ISP at the specified u8DelayFrmNum. Each buffer in snsCfg also has bUpdate to indicate
whether the buffer needs to be updated.

The first call to pfn_cmos_get_sns_reg_info will configure the I2C-related messages, establish
register address mapping, and obtain information such as sns, crop, and WDR size, as shown in the
following figure.

Subsequent calls to pfn_cmos_get_sns_reg_info are used to temporarily store modified AE register
information, as shown in the following diagram.

6.2. Notes 23

SensorDebuggingGuide, Release master

The temporarily stored AE register information will eventually be updated to the ISP driver by
calling isp_snsSync_info_set, and the ISP driver will set the sensor register by sending an I2C command
after delayFrmNum.

• pfn_cmos_get_isp_black_level - Retrieve the black level offset from the sensor spec. Convert the
offset to a 12-bit value and use it in the formula to obtain the gain: gain = 4095 / (4095 - offset)
* 1024.

6.2. Notes 24

CHAPTER

SEVEN

COMPLETE THE AE CONFIGURATION FUNCTION

The functionality of the sensor driver is implemented through operation callbacks. This section
assumes that the user is familiar with the sensor datasheet and describes the basic functions that should
be implemented by the AE callbacks.

7.1 Development Process

Please implement the following basic AE functional callbacks in order.

1. pfn_cmos_get_ae_default

2. pfn_cmos_fps_set

3. pfn_cmos_inttime_update

4. pfn_cmos_gains_update

5. pfn_cmos_again_calc_table

6. pfn_cmos_dgain_calc_table

7. pfn_cmos_get_inttime_max

7.2 Notes

• pfn_cmos_get_ae_default - Returns sensor data related to AE algorithm.

It is required to provide the maximum and minimum number of exposure steps in linear mode of AE
algorithm, the maximum and minimum values and types of gain in linear/WDR mode simulation/digital
gain. If the digital gain only has a few choices such as 0dB, 6dB, 12dB, etc., it is a DB type, otherwise
it is linear. Also, the number of frames in the exposure effective period, and the number of frames after
the start-up which is stable.

u32FullLinesStd: Number of lines in one frame at initialization.

u32MaxAgain: Maximum AGain value.

u32MinAgain: Minimum AGain value.

u32MaxDgain: Maximum DGain value.

u32MinDgain: Minimum DGain value.

u32MaxIntTime: Maximum exposure value in linear mode.

u32MinIntTimeTarget: Minimum exposure value in linear mode.

u32AEResponseFrame: Maximum AE response time (unit: frame).

25

SensorDebuggingGuide, Release master

The main task is to fill in the relevant AE properties according to the sensor spec, including FullLi-
nesStd, FullLinesMax, max/min/step values for IntTime, as well as max/min/step values for gain. It is
important to confirm the AccuType for IntTime and gain:

In general, the intTime setting is linearly related to the corresponding register,
with AccuType set to AE_ACCURACY_LINEAR. The gain setting is usually set to
AE_ACCURACY_TABLE, indicating mapping from the gain table, and we will introduce
pfn_cmos_again_calc_table/pfn_cmos_dgain_calc_table later. However, some sensors may
have special gain settings, such as the SOI_F35, which can only be adjusted in four steps: 1x, 2x, 3x,
and 4x.

• pfn_cmos_fps_set - Sets the frame rate of the sensor.

The default is the maximum frame rate of the Sensor output mode. The Sensor driver can reduce
the frame rate by increasing the number of vertical blanking lines in the output. Note that changing
the total number of output lines may also change the exposure range of some sensors, and the Sensor
driver must recalculate it. For example, if the initial sequence has an FPS of 30, the new FPS cannot
be greater than 30. The usual method of adjusting the frame rate is to increase the sensor output full
lines in proportion. For example, if full lines = 1125 at FPS=30, the full lines at FPS=25 would be
1125*30/25 = 1350.

• pfn_cmos_inttime_update - Sets the exposure time of the sensor and returns the actual number
of exposure lines to the AE.

The input parameter is a sequence, which represents the exposure values of short and long exposure
frames in order in WDR mode, in units of horizontal output lines. For example, when u32IntTime[0]=8
and u32IntTime[1]=1000, it means that the exposure time for the short exposure frame is 8 lines and for
the long exposure frame is 1000 lines. If in linear mode, the value in sequence[0] represents the exposure
value, and sequence[1] is meaningless. Note that in WDR mode, adjusting the exposure of the short
frame of the sensor may require recalculation of the Crop information and MIPI-RX settings.

• pfn_cmos_gains_update - Set the gain value for the sensor.

The input parameters are two arrays: pu32Again and pu32Dgain. In WDR mode, pu32Again[0]
represents the analog gain value of the short exposure frame, pu32Again[1] represents the analog gain
value of the long exposure frame; pu32Dgain[0] represents the digital gain value of the short exposure
frame, and pu32Dgain[[1] represents the digital gain value of the long exposure frame. The values are the
settings in the sensor buffer and can be converted to real gain values by pfn_cmos_again_calc_table
and pfn_cmos_dgain_calc_table. In linear mode, only pu32Again[0] and pu32Dgain[0] are meaningful.

They can be converted to real gain values by pfn_cmos_again_calc_table and
pfn_cmos_dgain_calc_table. In linear mode, only pu32Again[0] and pu32Dgain[0] are meaning-
ful.

In WDR mode:

pu32Again[0]: Gain configuration for short frame.

pu32Again[1]: Gain configuration for long frame.

pu32Dgain[0]: Dgain configuration for short frame.

pu32Dgain[1]: Dgain configuration for long frame.

7.2. Notes 26

SensorDebuggingGuide, Release master

There are 3 modes for gains update - SHARE, WDR_2F, ONLY_LEF, which are set in
pfnSetInit.

SHARE: Both short and long frames share the same gain configuration (Sony, OV).

WDR_2F: Short and long frames have separate gain configurations (Sony, OV).

ONLY_LEF: Only the gain for long exposure frame can be configured (SOI).

• pfn_cmos_again_calc_table - Input is the analog gain value based on a reference of 1024. The
sensor driver searches a lookup table or calculates the analog gain value that is closest and not
greater than the input value, and outputs the corresponding sensor buffer setting.

pu32AgainLin: AE passes in the 1024-based Again value. The Sensor driver calculates the closest
1024-based Again value based on the gain table or formula specified in the datasheet and returns
it. The range of Again is defined in pfn_cmos_get_ae_default.

pu32AgainDb: Returns the corresponding Sensor Again register configuration.

• pfn_cmos_dgain_calc_table - The input is a 1024-based digital gain value. The sensor driver
looks up or calculates the closest digital gain value that is not greater than the input value and
outputs the corresponding sensor buffer setting.

pu32DgainLin: AE passes in 1024-based Dgain. The Sensor driver calculates the closest 1024-based
Dgain based on the gain table or formula specified in the specification and returns it. The range
of Dgain is defined in pfn_cmos_get_ae_default.

pu32DgainDb: Returns the corresponding Sensor Dgain register configuration. If the sen-
sor Dgain adjustment is step-wise (1X, 2X, 4X, etc.), the stDgainAccu.enAccuType in
pfn_cmos_get_ae_default must be set to AE_ACCURACY_DB.

• pfn_cmos_get_inttime_max - Used in WDR mode to calculate the range of permissible exposure
lines for the short and long frames at the current exposure ratio.

SONY DOL, F35 HDR without VC, OV HDR-DT, Smartsens SC200AI all use the blanking interval
to achieve short frame exposure.

For some sensors (OS08A20, F35), they can be set to a fixed L2S distance, which means setting a
maximum short frame exposure value. When adjusting the short frame exposure, the L2S distance
will not change, and the ISP crop size does not need to be dynamically configured.

u16ManRatioEnable: Manual Ratio Enable, set to 1.

au32Ratio[0]: For 2-frame HDR, long frame exposure * 64 / short frame exposure.

au32IntTimeMax[0]: The maximum exposure value for the short frame (unit: one H time).

au32IntTimeMax[1]: The maximum exposure value for the long frame (unit: one H time).

au32IntTimeMin[0]: The minimum exposure value for the short frame (unit: one H time).

au32IntTimeMin[1]: The minimum exposure value for the long frame (unit: one H time).

pu32LFMaxIntTime[0]: NA.

7.2. Notes 27

CHAPTER

EIGHT

COMPLETE OTHER FUNCTIONS

8.1 Sensor Initialization Process

In addition to AE/ISP, the sensor driver also uses other callbacks to complete the initialization
process. Some parameter settings in sensor callbacks may affect each other, so the order of calling needs
to be carefully considered. The recommended call sequence is as follows:

During the pre-init phase, the environment for the Sensor driver is prepared and the following
callbacks are called:

• pfnSetInit - Initializes common parameters for the sensor. The enGainMode determines the be-
havior of the sensor’s gain in WDR mode.

• pfnSetBusInfo - Sets I2C information.

• pfnRegisterCallback - Registers the sensor ISP/AE callbacks.

• pfn_cmos_sensor_global_init - Initializes internal parameters of the sensor driver.

Set Mode determines the main output format of the sensor, and the following callbacks are called:

• pfn_cmos_set_image_mode - Sets the output image format.

• pfn_cmos_set_wdr_mode - Sets the linear or WDR mode.

Set User Default is used to set the AE parameters for the initialization sequence, and the following
callbacks are called:

• pfn_cmos_fps_set - Sets the frame rate per second. The default frame rate f32Fps is obtained
from the callback pfn_cmos_get_ae_default, and the new frame rate must not be greater than
the default value.

• pfn_cmos_inttime_update - Sets the number of exposure lines and returns it to AE. In linear
mode, the exposure line count range can be obtained from u32MaxIntTime and u32MinIntTime in
pfn_cmos_get_ae_default. In WDR mode, pfn_cmos_get_inttime_max can be called to obtain
the exposure line count range for long and short exposures based on the exposure ratio.

• pfn_cmos_gains_update - Sets the Sensor’s AGAIN and DGAIN. The Gain range can be obtained
from u32MaxAgain/u32MaxDgain and u32MinAgain/u32MinDgain in pfn_cmos_get_ae_default,
and the closest Gain and corresponding Sensor buffer settings can be obtained from
pfn_cmos_again_calc_table/pfn_cmos_dgain_calc_table.

Init Mipi-Rx initializes Mipi-Rx parameters and the Sensor’s Power On Sequence by calling the
Mipi-Rx driver in the kernel via ioctl. The main program steps are as follows:

• Open /dev/video0, which opens VIP-related power and clock sources.

• Call the callback pfnGetRxAttr in the Sensor driver to obtain the corresponding Mipi-Rx settings.

28

SensorDebuggingGuide, Release master

• CVI_MIPI_RESET_SENSOR - ioctl for Mipi-Rx, calling it opens the Sensor Reset pin defined
in the device tree.

mipi_rx: cif {
compatible = "cvitek,cif";
reg = <0x0 0x0a0c2000 0x0 0x2000>, <0x0 0x0300b000 0x0 0x1000>,

<0x0 0x0a0c4000 0x0 0x2000>, <0x0 0x0300d000 0x0 0x1000>;
reg-names = "csi_mac0", "csi_wrap0", "csi_mac1", "csi_wrap1";
interrupts = <GIC_SPI 155 IRQ_TYPE_LEVEL_HIGH>, <GIC_SPI 156 IRQ_TYPE_LEVEL_

↪→HIGH>;
interrupt-names = "csi0", "csi1";
snsr-reset = <&portd 7 GPIO_ACTIVE_LOW>, <&portd 7 GPIO_ACTIVE_LOW>;
resets = <&rst RST_CSIPHY0>, <&rst RST_CSIPHY1>,

<&rst RST_CSIPHY0RST_APB>, <&rst RST_CSIPHY1RST_APB>;
reset-names = "phy0", "phy1", "phy-apb0", "phy-apb1";

};

• CVI_MIPI_RESET_MIPI - ioctl for Mipi-Rx, calling it resets the Mipi-Rx settings.

• CVI_MIPI_SET_DEV_ATTR - ioctl for Mipi-Rx, calling it sets the Mipi-Rx properties.

• CVI_MIPI_ENABLE_SENSOR_CLOCK - ioctl for Mipi-Rx, calling it turns on the Sensor clock.
The frequency is determined by the mclk attribute in CVI_MIPI_SET_DEV_ATTR.

• CVI_MIPI_UNRESET_SENSOR - ioctl for Mipi-Rx, calling it closes the Sensor Reset pin defined
in the device tree.

To initiate the Sensor’s initial sequence, the Sensor Init calls the callback pfn_cmos_sensor_init
in the Sensor driver.

8.2 Sensor Shutdown Process

When closing the sensor, the following process can be referred to:

• Disable ISP - Disable the near-end ISP interface.

• Disable Sensor - Call the sensor driver’s callback pfn_cmos_sensor_exit to close the sensor stream
and I2C interface. Call pfnUnRegisterCallback to remove the sensor driver.

• Call Mipi-Rx ioctl CVI_MIPI_RESET_SENSOR to activate the Sensor reset pin.
Call CVI_MIPI_DISABLE_SENSOR_CLOCK to turn off the Sensor clock. Call
CVI_MIPI_RESET_MIPI to reset the Mipi-Rx settings.

8.3 Sensor AE Synchronization Process

Exposure and gain settings on the sensor may be reflected in different frames, so there needs to be
a mechanism to synchronize the settings between the sensor and the ISP. In addition, in WDR Manual
mode, adjusting the exposure of short-exposure frames may require updating the Mipi-Rx settings. The
following is the Sensor AE synchronization process:

8.2. Sensor Shutdown Process 29

SensorDebuggingGuide, Release master

1. The firmware calls the sensor callbacks pfn_cmos_gains_update and pfn_cmos_inttime_update
to update the AE settings.

2. The firmware calls the sensor callback pfn_cmos_get_sns_reg_info at fixed intervals to obtain
the sensor/ISP/Mipi-Rx settings.

3. The firmware passes the sensor/ISP/CIF settings to the ISP driver’s synchronization processing
mechanism via the ISP ioctl.

4. When it is necessary to update the sensor settings, the ISP driver calls the I2C interface in
cv18xx_vip.ko to update the sensor cache.

5. When it is necessary to update the Mipi-Rx settings, the ISP driver calls the Mipi-Rx driver in
cvi_mipi_rx.ko.

8.3. Sensor AE Synchronization Process 30

CHAPTER

NINE

AE RELATED VERIFICATION

After completing the image verification, AE handover work can be performed. AE handover needs
to ensure that the basic exposure and gain are linear, and that issues such as response frame and
synchronization are verified.

The main task is to perform the verification of the SensorPorting_AE (sensor_test) table. The
verification work requires the use of a light box and the sensor_test testing program.

Note: When performing AE related verification, the previously commented-out code needs to be
released.

Excel file:

9.1 BLC Confirmation and Verification

The BLC offset value is usually specified in the sensor specification and can be directly written to
xxx_cmos_param.h. If not specified, the actual BLC value can be obtained by the following method:

Modify xxx_cmos_param.h and change the values highlighted in red below: 273 represents the
BLC offset and should be changed to 0, 1097 represents the gain and should be changed to 1024 for all
instances.

Cover the lens and run sensor_test in a completely dark environment, then enter CMD.

5
2 0 70 0 0

Printing out the Luma value and multiplying it by 4 will give you the corresponding BLC offset
value.

31

SensorDebuggingGuide, Release master

For example, the corresponding blc offset below is 74x4=286.

Finally, the tested blc offset was substituted into the formula gain = 4095 / (4095 - offset) * 1024
to obtain 1106, and the confirmed blc and gain were filled in xxx_cmos_param.h.

9.2 Exposure Linearity Verification

Point the camera at the light box and run sensor_test and Type CMD in linear mode.

5
2 0 71 0 0

Enter CMD for long exposure in Wdr mode.

5
2 0 75 0 0

Enter CMD for short exposure in Wdr mode.

5
2 0 76 0 0

In order to satisfy the relationship that the exposure time of AE brightness statistics in 1/60s should
be half of that in 1/30s, and the exposure time of AE brightness statistics in 1/120s should be half of
that in 1/60s. For example, the results shown in the following figure are consistent.

9.2. Exposure Linearity Verification 32

SensorDebuggingGuide, Release master

9.2. Exposure Linearity Verification 33

SensorDebuggingGuide, Release master

9.3 Gain Linearity Verification

Point the camera at the light box and run sensor_test and type CMD in linear mode.

5
2 0 72 0 0

Enter CMD in Wdr mode.

5
2 0 77 0 0

The following figure shows the test results. In linear mode, again the value increases from 1024 to
8192, and the luma value changes from 74 to 607, basically conforming to the eight-fold relationship. In
Wdr mode, again changed from 1024 to 2048, and luma changed from 51 to 100, basically conforming to
the two-fold relationship. So luma and again are linear.

9.3. Gain Linearity Verification 34

SensorDebuggingGuide, Release master

9.4 Advanced Verification

If you want to verify exposure linearity exactly, you need to use CMD.

5
8 SID FID startExpTime endExptime

Continuous exposure linearity can be tested, representing precision increments of %5 from startEx-
pTime to endExpTime.

SID represents sensorID, FID represents frameID, 0 represents long frame, and 1 represents short
frame.

If you want to verify the gain linearity exactly, you need to use CMD.

5
7 SID FID time StartISO EndISO

You can test continuous gain linearity, representing increments as you traverse the gaintable from
StartISO to EndISO. Here, ISO 100 indicates 1x, that is, gain = 1024.

9.4. Advanced Verification 35

SensorDebuggingGuide, Release master

9.5 Response Frame Verification

Different sensor parameters take effect at different times. For example, some sensors take effect after
5 frame, while others take effect after 4 frame or 3 frame. Even if the same sensor is set in different
registers, the effective time may be different. Therefore, it is necessary to verify the reaction frame of
the register related to AE.

Run sensor_test and enter CMD in linear mode.

5
2 0 71 0 0

This measures how many frames have to pass before shutter is set to take effect. As you can see
below, after shutter changes from 33333 to 16666, it takes 4 frames for the Luma value to change. So
the exposed ResponseFrame is 4.

Enter CMD.

5
2 0 72 0 0

This measures how many frames elapsed after the gain is set before it takes effect. As you can see
from the figure below, after changing again from 1024 to 2048, it takes 4 frames for the Luma value to
change. So the ResponseFrame for the gain is 4.

9.5. Response Frame Verification 36

SensorDebuggingGuide, Release master

After the ResponseFrame of exposure and gain is tested, ResponseFrame is filled into the
cmos_get_ae_default function of xxx_cmos.c, as shown below:

9.6 Validation of Exposure Gain Synchronization

Sometimes, not all sensors take effect with gain and shutter at the same time. For example, it may
be possible that the ResponseFrame of gain is 4 and the ResponseFrame of shutter is 3, which requires
verification by exposure gain synchronization mechanism.

Run sensor_test and enter CMD in linear mode.

5
2 0 73 0 0

This CMD indicates how long it takes for AE statistics to change while changing shutter/gain. In
the figure below, you can see that changing shutter and again simultaneously takes effect after 4frames.

9.6. Validation of Exposure Gain Synchronization 37

SensorDebuggingGuide, Release master

If the statistical value of AE changes after increasing gain and exposure at the same time, such as
the following results, it indicates that gain and exposure do not take effect synchronously.

L:479 T:33333 AG:8192

L:479 T:33333 AG:8192

L:479 T:1000 AG:1024

L:479 T:1000 AG:1024

L:299 T:1000 AG:1024

L:211 T:1000 AG:1024

L:3 T:1000 AG:1024

L:3 T:1000 AG:1024

L:3 T:1000 AG:1024

L:3 T:1000 AG:1024

In this case, delay the gain or shutter to take effect. Modify the cmos_get_sns_regs_info function
in xxx_cmos.c to change the delay setting of register.

For example, the following figure shows that the gain is delayed by 2 frames, indicating that it is 2
frames later than other register Settings.

9.6. Validation of Exposure Gain Synchronization 38

SensorDebuggingGuide, Release master

9.7 Verify FPS Controllability

Run with sensor_test and type CMD.

5
4 SID FPS

The default fps is 25fps. You can check the output fps of the sensor by cat /proc/cvitek-vi_dbg.

9.7. Verify FPS Controllability 39

CHAPTER

TEN

COMMON PROBLEM

10.1 Proc Message Interpretation

cat /proc/mipi-rx

Combo DEV ATTR mainly provides interface configuration information for the sensor:

Devno: indicates the sensor number. 0 indicates sensor0, and 1 indicates sensor1. Currently,
only two sensors can be entered at the same time.

WorkMode: indicates the interface type (mipi/sublvds/ HISPI /BT656⋯).

DateType: indicates the sensor data format (raw8/raw10/raw12/ YUV422_8BIT⋯).

WDRMode: wdr mode (none indicates non-wDR, common wdr mode:VC, DT, Manual).

LinkId: lane sequence configuration.

PN swap: indicates PN reversal. If there is PN reversal, set the lane to 1.

SyncMode/DataEndian/SyncCodeEnddian: for mipi interface does not support so no con-
figuration, for sublvds, hispi requires configuration.

MIPI INFO mainly refers to the information parsed by mipi-rx:

EccErr, CrcErr, HdrErr, WcErr: If the value is not 0, it indicates that Ecc,crc, and wc have been
used to check err. Check the correctness of lane mapping, mipi timing, and lane hardware circuit.

Fifofull: If the value is not 0, the mac speed is too slow and the mac clk needs to be increased.

Decode: parsing the data type l (Raw12 / raw10 / raw8 / YUV422⋯).

PhySical: D0-D4 Indicates the data on the lane bus. After the hi speed state is entered, data changes
in D0-D4.

Digital: D0-D4 Displays the status of each data lane after the hi speed state is entered. CK_HS,
CK_ULPS, CK_ERR, and Deskew indicate the status of clk lane. Normally, CK_HS=1 and the rest
value is 0, but CK_HS=1 and CK_STOP=1 continue.

40

SensorDebuggingGuide, Release master

10.2 The Open of Sensor-related Log

Enable cif drv log:

echo “module cvi_mipi_rx +p”> /sys/kernel/debug/dynamic_debug/control

dmesg -n 8

Enable syslog to print:

Output to serial port screen,

/sbin/syslogd -l 8 -s 2048 -O /dev/console

or output to file.

/sbin/syslogd -l 8 -s 2048 -O /mnt/data/mw.txt

10.3 How to Configure Lane Line Sequence

Note that the lane id to be configured should be configured with the sensor as the reference. The
index number of lane_id array represents the Lane ID of the Sensor, the index number 0 represents
the sensor clock, and the index number 1-4 represents sensor lane 0~3. The value of the land_id array
indicates the Lane ID of MIPI-Rx of soc. 0 indicates MIPIRX1_PAD0 and 1 indicates MIPIRX1_PAD1.
lane_id is set to -1 for unused lanes.

Assume that the lane connection of sensor and soc is shown in the figure below, and the corresponding
lane id configuration is {3,4,2,0,1}.

sensor:

soc:

10.2. The Open of Sensor-related Log 41

SensorDebuggingGuide, Release master

SENSOR Pins MIPI Lane Pins
MIPI_CK (index = 0) MIPIRX0_3 (value = 0)
MIPI_0 (index = 1) MIPIRX0_4 (value = 1)
MIPI_1 (index = 2) MIPIRX0_2 (value = 2)
MIPI_2 (index = 3) MIPIRX0_0 (value = 3)
MIPI_3 (index = 4) MIPIRX0_1 (value = 4)

10.4 How to Select the MAC Frequency

MAC represents how often the isp receives data from the sensor,

Formula MAC_Freq * pix_width = lane_num * MIPI_Freq * 2.

MAC_Freq: VI MAC operating frequency.

pixel_width: pixel bit width.

lane_num: indicates the number of MIPI lanes.

MIPI_Freq: operating frequency of each lane.

Assuming that the MAC freq is 400 M, pixel_width = 12, lane_num = 4, the maximum MIPI_Freq
= 400 * 12 / (4 * 2) = 600MHz is supported.

Where MIPI_Freq means phy_Clk, the value is bps/2. For example, the specifications of sony
imx335 are 1188Mbps per lane and phy_clk = 1188/2=594Mhz.

Conversely, if the sensor gives us the data rate, we need to be able to figure out the appropriate mac
freq.

10.4. How to Select the MAC Frequency 42

SensorDebuggingGuide, Release master

10.5 Error Checking Process

I2C Write Fail

• Sensor i2c attribute confirmation.

– Check the I2C bus id.

– Check the I2C slave addr.

– Check the addr/data bit width of the sensor register (8bit or 16bit).

If the bit width is incorrectly configured, a time out error is displayed.

• Check whether the hardware is normal.

• Verify that the rst, pwdn, and mclk pins in the dts are correctly configured.

10.5. Error Checking Process 43

SensorDebuggingGuide, Release master

echo “snsr_on 0 1 1”> /proc/mipi-rx //1 indicates 37.125M, 2 indicates 25M, and 3 indicates
27M

echo“snsr_on 1 1 1”> /proc/mipi-rx // 1 indicates 37.125M, 2 indicates 25M, and 3 indicates
27M

echo “snsr_r 0 0”> /proc/mipi-rx

echo “snsr_r 1 0”> /proc/mipi-rx

• Run the i2cdetect -y -r N command to test whether the i2c can detect the detection. N Indicates
the i2c port corresponding to the sensor.

• Check if the power on timing meets spec requirements (measure MCLK and I2C with an oscillo-
scope).

Decode err

cat /proc/mipi-rx, check the proc message and check whether the Proc message is in hs-state. After
the sensor is powered, it will enter the high speed state from the low power state. As shown in the
following figure, if D0-D4 of mipi-rx has data and keeps changing, it indicates that hs-state is entered.

• Confirm i2c pathways (i2cdetect can sweep out sensor address).

• Confirm order right lane line.

a. If the data lane in proc has no data jump and the accompanying CK_HS is 0, the clk lane is
not found correctly (please confirm the clk lane).

b. If there is data jump in the data lane in proc and CK_HS is 1, it means that the clk lane is
found correctly and has entered hs mode. If ecc, crc and other errors occur, it means that the
data lane is not configured correctly (please confirm the data lane).

• Confirm timing.

c. If the previous two points are confirmed to be correct, but CK_HS =0 and there is no data
jump in the data lane, the timing may not meet the conditions for entering hs. In this case,
the value of hs-zero and hs-trail can be adjusted and increased to lengthen the detect period.

d. If the first two points are confirmed to be correct, CK_HS =1, data lane has data jump, but
there are still ecc, crc and other err, it may be that the setting of Hs-settle is too large or too
small, and the data behind is pressed.

• Confirm whether the hw is damaged.

ECC err

• Check lane Id mapping.

• Check sensor tx hs-zero/hs-prepare.

hs-zero and hs-parepare need to determine the value from sensor spec or directly ask the sensor
manufacturer. It is not recommended to adjust the value.

• Check mipi-rx hs-settle.

When the hs-settle time is too long, the “sync code”in the data will be pressed, and the “sync
code”cannot be resolved, resulting in ecc err.

Adjust hs-settle you can directly modify xxx_cmos_param.h as follows, fill in the correct hs_settle.

10.5. Error Checking Process 44

SensorDebuggingGuide, Release master

You can also directly ctrl+z to adjust hs-settle, and use devmem command to modify the bit[23:16]
value of register 0x0300b048. After adjustment, enter fg to jump back to the program.

devmem 0x0300b048 32 0xXYZ

CRC err/Word count err

Adjust the sensor tx hs-trail. If the hs-trail is pulled too fast, the data behind it may be pressed,
resulting in data loss, resulting in crc err and wc err. You need to adjust the hs-trail register setting of
the sensor.

vi_select timeout

• cat/proc/mipi - rx show whether there is the i2c, decode, ecc, CRC, wc etc. err. If the preceding 4
steps are correct, cat /proc/cvitek-vi_dbg checks for WidthGTCnt, WidthLSCnt, HeightGTCnt,
and HeightLSCnt. If such error occurs, crop size in sensor init setting is inconsistent with the set
given to isp. Please confirm the modification against sensor spec.

• Check whether MAC clock is too low, if the MAC clock is too low, can lead to an isp processing
speed too slow in fifo full, can also lead to the timeout.

10.5. Error Checking Process 45

CHAPTER

ELEVEN

COLOR, NOISE REDUCTION, AND OTHER CORRECTIONS

Please refer to the “Image Quality Debugging Tool User Guide_v1.1.1”.

46

CHAPTER

TWELVE

IMAGE QUALITY TUNING.

Please refer to the “Image Tuning Guide_V0.2.5”.

47

CHAPTER

THIRTEEN

DEBUGGING TOOL

After developing the sensor, use the debugging tool “sensor_test”for testing.

The sensor configuration file is located at “/mnt/data/sensor_cfg.ini”.

Apply the patch“sensor_test.patch”in the middleware directory using the“git apply”command,
and compile to generate “sensor_test”for use.

Patch file:

13.1 Basic Functions.

By default, sensor_test has the following 5 functions, as shown in the figure below:

1. Dump sensor raw image.

2. Dump sensor YUV image.

3. Set flip/mirror for the sensor output image.

4. If the sensor driver supports linear and WDR modes, this option can be used to switch sensor
modes.

5. AE debugging function.

13.2 Dump RAW

Refer to 5.1 Dump RAW.

48

SensorDebuggingGuide, Release master

13.3 Dump YUV

Refer to 5.2 Dump YUV.

13.4 Set flip/mirror

It provides mirror/flip functionality.

Run sensor_test and enter 3 to select“set chn flip/mirror”. Follow the prompt chn(0 to 1): Enter
dev (0 indicates vi pipe0 to control channel 0, 1 indicates vi pipe1) to switch on flip/mirror.

Note: After the function is executed, ensure that the direction and color of the dump yuv diagram
are as expected.

13.5 Switching between WDR and Linear

It provides the switch function between sensor end width dynamic mode and linear mode.

Run “sensor_test”and select option 4 “linear hdr switch”. Then, follow the prompt “Please
select sensor input mode (0:linear/1:wdr) :”to enter 0 for Linear or 1 for WDR.

Note:

1. This function requires the sensor to support both Linear and WDR modes.

2. Different sensor configurations need to be modified in the “sensor_test.c”file, as shown in the
figure below.

13.3. Dump YUV 49

SensorDebuggingGuide, Release master

13.6 AE Related Verification

Refer to AE Related Verification.

13.6. AE Related Verification 50

	Disclaimer
	Introduction to Sensor Drivers
	Hardware Architecture
	Sensor Library Structure
	Debugging Process

	Confirm Specifications
	Confirm Main Chip Specifications
	Confirm Sensor Specifications

	Image Output Debugging
	Hardware Preparation
	Configure the Initialization Sequence
	Adapting to Sample Common (New)
	Adapting to Sample Common (Old)
	Adding Sensor INI Configuration

	Image Output Verification
	Dump RAW
	Dump YUV

	Basic Functions of ISP
	Development Process
	Notes

	Complete the AE Configuration Function
	Development Process
	Notes

	Complete Other Functions
	Sensor Initialization Process
	Sensor Shutdown Process
	Sensor AE Synchronization Process

	AE Related Verification
	BLC Confirmation and Verification
	Exposure Linearity Verification
	Gain Linearity Verification
	Advanced Verification
	Response Frame Verification
	Validation of Exposure Gain Synchronization
	Verify FPS Controllability

	Common Problem
	Proc Message Interpretation
	The Open of Sensor-related Log
	How to Configure Lane Line Sequence
	How to Select the MAC Frequency
	Error Checking Process

	Color, Noise Reduction, and Other Corrections
	Image Quality Tuning.
	Debugging Tool
	Basic Functions.
	Dump RAW
	Dump YUV
	Set flip/mirror
	Switching between WDR and Linear
	AE Related Verification

